
Real-Time I/O-Monitoring of HPC Applications
with SIOX, Elasticsearch, Grafana and FUSE

Eugen Betke, Julian Kunkel

Deutsches Klimarechenzentrum, Hamburg 20146

Abstract. The starting point for our work was a demand for an overview
of application’s I/O behavior, that provides information about the usage
of our HPC “Mistral”. We suspect that some applications are running
using inefficient I/O patterns, and probably, are wasting a significant
amount of machine hours. To tackle the problem, we focus on detec-
tion of poor I/O performance, identification of these applications, and
description of I/O behavior.
Instead of gathering I/O statistics from global system variables, like
many other monitoring tools do, in our approach statistics come directly
from I/O interfaces POSIX, MPI, HDF5 and NetCDF. For interception
of I/O calls we use an instrumentation library that is dynamically linked
with LD_PRELOAD at program startup.
The HPC on-line monitoring framework is built on top of open source
software: Grafana, SIOX, Elasticsearch and FUSE. This framework col-
lects I/O statistics from applications and mount points. The latter is used
for non-intrusive monitoring of virtual memory allocated with mmap(),
i.e., no code adaption is necessary. The framework is evaluated showing
its effectiveness and critically discussed.

1 Introduction

The moderate progress of network and storage technologies, and comparatively
fast increase of computational power over the last decades had a negative impact
on the balance of many current HPC systems. Especially, increasing number of
cores per node facilitates higher data processing rates that often exceed the
capabilities of network or storage. In data-intensive research fields, like climate
science, where data volumes are large and steadily increasing, I/O became an
annoying bottleneck. Nowadays, the imbalance between computational power,
network bandwidth and storage performance makes us re-think the usage of
I/O resources. Researchers in the I/O field propose various directions for new
HPC architectures (e.g. burst buffer), hardware solutions (e.g. SSDs), and non-
intrusive software solutions (e.g. compression), that solve partially the problem.
But in many cases, poor I/O performance is a result of inefficient I/O access
patterns of applications. These applications could probably be fixed, but the
difficulty is to detect these applications and to describe to what extend they are
affected by the problem. An insight of how application uses the underlying I/O
interface could be of great help.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-67630-2_15
1/13

In data-intensive science, MPI-IO [11] is one of the most frequently used
high I/O level interfaces. It was designed as a general purpose I/O interface,
to facilitates parallel low level access to files. Most implementations contain a
number of optimizations like Two-Phase I/O, Collective I/O, and Data Sieving,
which purpose is to create from several I/O access, large and contiguous accesses,
or other techniques like Non-Blocking I/O, which handle data asynchronously.
HDF5 and NetCDF are high level, portable file formats, data models and li-
braries specialized to store large datasets. They also provide a set of tools for
exploration and manipulation of data. The data size is not limited by the specifi-
cations (but limited by current implementations to 32 EiB). They run on a wide
range of computational platforms, from laptops to large scale HPCs. Although,
POSIX wasn’t designed with parallel file access in mind and has some limitations
when accessing shared file regions by multiple processes, it still remains one of
the most important interfaces, especially because most of the back-ends of the
high-level libraries use it to write data to storage.

Our long-term goals are the detection of poor performance and identification
of problematic HPC applications. This work is an important step in this direc-
tion. Here, we present a user-friendly way for on-line visualization and description
I/O of behavior of HPC applications. For that purpose, we build a monitoring
framework on top of open source software: SIOX, Elasticsearch, Grafana, and
FUSE. One of its features (and also our main contribution) is the novel approach
for a non-intrusive instrumentation of virtual memory allocated by mmap() op-
eration.

This paper has the following structure. Section 2 presents related work. Sec-
tion 3 introduces the framework components. In Section 4 we show the design
of our framework. In Section 5 we describe our experiments and evaluate the
results in Section 6.

2 Related Work

In this section we introduce three monitoring tools: Darshan, Vampir, and SIOX.
Unfortunately, it doesn’t contain any related work about monitoring of mmap(),
for the simple reason: even after a careful research, we didn’t found any serios
publication. This makes us think, our approach is a novelty.

Darshan Darshan [1,6] is an analysis tool for characterization of I/O behavior
of HPC systems. It was developed to capture accurate pictures of application
behavior and properties, e.g., I/O access pattern on a file. For instrumentation
Darshan uses a number of different wrappers. They intercept I/O operations
of all files used by the application and produce output for each file. Instead of
storing all the data in a trace file, like conventional tools do, Darshan creates
statistics, that are reduced, compressed, and represented in a compact form.
After analysis, the data is written to a log file. The data in these files describes
the behavior of the entire application. This approach has a negligible overhead
and requires a limited amount of memory.

2/13

For analysis of log file Darshan provides a number of command line tools. One
of them is “darshan-job-summary”. As the name indicates, it creates a summary
of a log file. The Darshan instrumentation support different I/O interfaces. They
have full support for the POSIX and MPI-IO interfaces. HDF5 and PNetCDF
are supported partially. Darshan can be utilized in a broad spectrum of tasks,
beginning with optimization of applications and ending with analysis of I/O
behavior of entire HPC systems. The lightweight and efficient design of Darshan
makes it possible to use it for load characterization on large systems, even on
productive systems.

Darshan extended tracing (DXT) allows a more detailed profiling of I/O
software stack. It contains two main components, the logging and the analysis
tool. The former creates trace files while application runs and the latter can be
used for the offline analysis and visualization of the data. The features work
without any modification or recompilation of applications, provide a number of
usefull statistics and work with a negligible overhead.

Vampir Vampir [3,9] is a graphical tool for performance analysis of parallel
systems. It supports off-line analysis of parallel software (MPI, OpenMP, multi-
threaded) and hardware accelerated (CUDA and OpenCL) applications. The
analysis engine allows a scalable and efficient processing of large amounts of data.
Vampir uses the infrastructure of Score-P [2] for instrumenting of applications.
Score-P stores events in a file, that can be analysed by Vampir and converted
to different views, e.g., events can be presented on a time-axis, or compressed to
different statistics. Some views have elaborate filters and zoom functions, that
can provide an overview, but can also show details. Effective usage of Vampir
requires a deep understanding of parallel programming. Although, the program
makes it possible to capture and to analyse sequences of POSIX I/O operations,
it gives little or no information about the origin, or evaluation of I/O. The field
of application of Vampir is restricted through the missing support of on-line
analysis.

SIOX SIOX [10] is a highly modular instrumentation, analysis and profiling
framework. It contains an instrumentation tool “siox-inst”, a trace reader “siox-
trace-reader”, and a set of plug-ins and wrappers.

Currently, there are wrappers for MPI, POSIX, NetCDF and HDF5 inter-
faces. They contain re-implementations of the original I/O functions. Inside a
reimplemented function is a call to the original function or syscall, and instru-
mentation code, that generates an activity after each execution. Activities in
SIOX are structures that contain various information about the calls. The wrap-
pers can be dynamically linked to an application by using the LD PRELOAD
feature.

Extreme modular design is one of the key features of SIOX. The tools siox-
inst and siox-trace-reader can be considered as pure plug-in infrastructures. In
other words, there is no functionality inside until some plug-ins and wrappers
are loaded. Usage of different sets of plug-ins and wrappers may result in “new”

3/13

tools, that fits exactly the problem. There is no restriction on the number of
wrappers and plug-ins can be loaded simultaneously, so that the functionality of
SIOX can be easily extended, e.g., to perform complex tasks.

Other two important features of SIOX are the support of on-line and off-line
analysis. On-line analysis can be done by siox-inst, by collecting activities from
the wrappers and forwarding them to the registered plug-ins. Off-line analysis is
based on both tools. In the first step siox-inst stores the activities in a file, by
using the activity-writer-plugin. In the second step siox-trace-reader reads the
activities from the file and forwards them to the loaded plug-ins. (The second
step is the actual off-line analysis.)

Most of the SIOX plug-ins are using plug-in interfaces that are supported by
siox-inst and siox-trace-reader, and consequentially these plug-ins can be used
by both tools.

3 Components

This section contains a short description of components used in our online mon-
itoring framework.

3.1 Elasticsearch

Elasticsearch [7] is a distributed, scalable, real-time search and analytics engine,
published under the Apache 2 license. It is built on top of the Apache Lucene
full-text search-engine library. The complexity of the library is hidden behind
a RESTful API. The indexing of all fields allow very fast lookups, and makes
it real-time capable. The library can be used on a broad range of devices. It is
suitable for a single machine as well as for large-scaled super computers.

3.2 Grafana

Grafana [5] is a feature-rich, interactive visualization and dashboard software.
For visualization, it provides different widgets, e.g., time series, tables, text fields
for single metrics. It also supports a many data sources, e.g., Graphite, Elastic-
search, InfluxDB, OpenTSDB.

Especially remarkable is the wide range of available features. Quick range
selection makes the navigation inside a time series precise and easy. It has zoom
and auto refreshing functions, and a set of predefined, often used ranges. In
most cases, a few mouse clicks are sufficient to visualize required range of data.
Templating is one of the most powerful features of Grafana. Templates define
arrays, which are dynamically filled with values, depending on the current data
or state of Grafana. These array can be used on different places, e.g., in metric
queries, panel titles, automatic dashboard generation. The latter means, that
it is possible to generate for each value in the array a graph or other widget,
e.g., suppose an array holds a list of node names, and performance graph was
defined, then this graph can be created for each node name automatically. When

4/13

U
SE

R
SPA

C
E

K
E

R
N

E
L

SPA
C

E

Application

Virtual File System FUSE Kernel Module

User Level File System
linked against libfuse

Built-In File System
e.g. BTRFS, EXT4

Storage

1 6 3 4

2

5

Fig. 1: FUSE I/O path.

a new node name appears in the array, the corresponding graph is automatically
generated. Grafana support annotations. This feature is useful, when some event
should be shown in the graph.

Grafana dashboards can be easily shared via URL. The URL is automatically
updated on dashboard changes.

3.3 IOFS: a FUSE-based file system

FUSE (Filesystem in Userspace) [8] is a kernel interface for file system drivers,
which can be run in non-privileged mode. The FUSE project provides an imple-
mentation of this interface. It consists of two key components, the fuse kernel
module and libfuse library. The latter can be linked against a program to estab-
lish a connection to the fuse kernel module.

Virtual file system (VFS) is an abstraction that hides real file systems. Appli-
cations see VFS only, and communicate with file systems only over VFS. Figure 1
shows how I/O requests to a FUSE file system are processed. VFS and FUSE
modules act like switches. At VFS arriving I/O requests, which are addressed
to a FUSE file system, are routed to the FUSE kernel module and then to the
destination. The replies take the reverse route. How user level file system stores
and retrieves the data, is left to the implementation.

IOFS is a user level file system that implements the FUSE interface. It was
developed to be used as an auxiliary tool for instrumentation of mount points.
IOFS mounts a folder from an existing file system on some mount point. It runs
completelly in user space and behaves like an ordinary application when started
in foreground, i.e., SIOX wrappers can be dynamically linked using LD_PRELOAD.
One important feature of IOFS is that it has neither caches nor buffers, i.e., all

5/13

I/O request are forwarded to VFS without delay. Furthermore, the implemen-
tation doesn’t call mmap() function. All this makes it to a perfect candidate for
instrumentation with SIOX.

3.4 SIOX + On-line Monitoring Plug-in

The SIOX-On-line-Monitoring plug-in captures data from SIOX activities, SLURM
and system environment variables, and uses system clock for time stamp. The
system clock is supposed to be synchronized. For performance reasons we don’t
collect all the data. Instead, in a defined time interval only relevant values are
aggregated to statistics, and are sent to Elasticsearch in JSON format using the
REST-API. This approach ensures a low data transfer rate and makes it inde-
pendent from access pattern of applications. The data transfer rate increases
only with number of files used in the application.

Statistics A data point or statistics (Table 1) consist of metrics, tags, and a
time stamp. The distinction is based on usage of the data in Grafana.

The current set of metrics consists of number of bytes (*_bytes), dura-
tion (*_duration), number of calls (*_calls), and number of bytes per call
(*_bytes_per_call) for read and write operations. Number of bytes and dura-
tion are obtained directly from SIOX activities. Number of calls is a counter of
occurred activities in a time interval. Derived metrics are calculated from more
than two metrics. They must be created inside the plug-in, because Elasticsearch
doesn’t support arithmetic operations on data, and Grafana is limited to scal-
ing with a constant value, e.g., write_bytes_per_call is derived from basic
metrics.

Tags provide additional information to the metrics. The tags username,
hostname, procid, jobid are obtained directly from SLURM environment vari-
ables. hostname is provided by the system. filename and access (access type:
write, read, . . .) are provided by SIOX activities. layer is a user defined tag
and can take any value, e.g., we use different values for monitoring applications
and mount points.

timestamp is playing a special role in data series. Currently, milliseconds are
the highest possible resolution supported by Elasticsearch.

Categories of operations Some I/O interfaces contain different functions
that do similar operations, e.g., POSIX offers writev(), write(), pwrite(),
pwrite64(), puts(), and other functions, which can do a write operation. For
our purposes it’s not necessary to know function names, but operation names is
fully sufficient. At the moment our prototype supports write and read operations.
Further operations can be added with a minimal effort.

Visualization For visualization of I/O behavior we use several Grafana dash-
boards. Generally, metrics are used on the y-axis and time stamp on the x-axis.

6/13

Name Type Value
write_duration metric (basic) time spent for writing
write_bytes metric (basic) bytes written
write_calls metric (basic) number of I/O operations
write_bytes_per_call metric (derived) write_bytes, write_calls
read_duration metric (basic) time spent for reading
read_bytes metric (basic) bytes read
read_calls metric (basic) number of I/O operations
read_bytes_per_call metric (derived) read_bytes, read_calls
filename tag filename
access tag access type (write, read, . . .)
username tag SLURM_USER
hostname tag HOSTNAME
procid tag SLURM_PROCID
jobid tag SLURM_JOBID
layer tag user defined
timestamp date system clock

Table 1: Statistics

The tags are used for filtering of data, e.g., we can choose a filename to show
I/O behavior of a specific file. Several tags can be used simultaneously.

4 Monitoring Framework Design

On a properly configured system monitoring is enabled by starting an application
with a SIOX wrapper. Virtually, one can think of SIOX as a function that takes
an executable as argument. For this we use the notation: SIOX(<exec>).

4.1 On-line monitoring of applications

SIOX(Application) in Figure 2 represents the instrumentation of an applica-
tion. SIOX creates activities from I/O calls and builds an activity stream to
the Online-Monitoring-Plugin. The plug-in aggregates the activities to statis-
tics and sends them to Elasticsearch. Grafana uses data from Eleasticsearch for
visualization.

Monitoring of Virtual Memory is not possible in this approach, because this
component runs in kernel space, but it can produce application related I/O, e.g.,
when the application maps a part of a file to virtual memory by using the mmap()
function and then accesses the content of the file through the memory.

4.2 On-line monitoring of mount points

The basic idea of this approach is to move I/O request produced by virtual
memory from kernel space to user space. This can be easily achieved with a
FUSE-based file system. In the first step IOFS mounts a folder, that contains
required files, to some mount point. In the second step, we make sure, our appli-
cation works on this directory. When the application applies the mmap() function
to some file on this mount point, all I/O requests from virtual memory to this
file will be forwarded to IOFS.

7/13

U
SE

R
SPA

C
E

K
E

R
N

E
L

SPA
C

E

(optional)
SIOX(Application)

+ Online-Monitoring-Plugin

Virtual File SystemVirtual Memory FUSE Kernel Module

(optional)
SIOX(IOFS)

+ Online-Monitoring-Plugin

Built-in File System

Storage

Elasticsearch

Grafana

I/O statistics I/O statistics

I/O statistics

mmap()

1

1’

6

7

2
3 4

5

Fig. 2: Extended on-line monitoring

The monitoring works in the same way as SIOX(Application), but this time
we use SIOX(IOFS).

Now, the monitoring is closer to the system than to the application. It pro-
vides information about real communication that takes place on a specific mount
point. That means, in this way we can observe some thing that happens on sys-
tem level, e.g., optimizations that are done by the operation system; changed
access granularities or burst writes.

A nice side effect of this approach is the indirect instrumentation of POSIX
mmap operations. Remember, that the direct instrumentation was a problem,
because memory allocated by mmap is accessed directly without a syscall, and
therefore, couldn’t be instrumented by SIOX. In IOFS such accesses are trans-
formed to common read/write POSIX operations, which in turn are supported
by SIOX.

On-line monitoring of applications using this approach is possible only to a
limited extent. Firstly, the I/O requests on this mount point cannot be tracked
back to the application. There is an information loss. We must made an implicit
assumption, that we know which application works with the data and that all
I/O requests belong to the same application. Secondly, on each node we can
create only one mount point with the same name. This can be a disadvantage
for multi-threaded applications, because there is no way to track I/O requests
back the the threads. This information will also be lost, and there is no easy

8/13

Fig. 3: Screenshot of the on-line monitoring dashboard

way to solve this issue. Thirdly, not all I/O operations are directed to the mount
point. Typically, there is a number of files that are accessed outside the mount
point. This information will also not be registered.

5 Experiments

In the first experiment we measure how many metrics we can send to Elastic-
search. For that purpose Elasticsearch was installed on a system equipped with
Intel i7-6700 CPU (Skylake) with 4 cores @ 3.40GHz and 16 GB DDR3 RAM.
The metrics were generated on Mistral by 10 nodes and 20 processes per nodes
and sent over 1 GiB ethernet to Elasticsearch in JSON containers each containing
100 metrics.

In the second experiment, the measurement of overhead, we run a series of
experiments on system equipped with Intel Core i5-660 (Clarkdale), 4M Cache,
3.33 GHz, 12 GB DDR3 RAM, 2 TB HDD (test disk), 1 GB/s network, 500
GB HDD (OS disk). The experiments were conducted with IOR and IOZone

9/13

benchmarks. IOR was used to produce independent streams of POSIX opera-
tion calls and IOZone was started in mmap-mode. We varied the number of
processes (NP) and request size and run the experiments several times for all
four configurations.

The mean values of I/O performance of benchmarks without monitoring
(NMON) were used as reference values. The same benchmarks were run with
monitoring of application (APPIO), mount point (IOFS), and with both (BOTH).
The experiments were repeated 10 times and the results are shown in Figures 4
and 5.

6 Evaluation

The primary goal of the framework is to provide enough information to identify
inefficient applications. Additionally, from the user perspective, the framework
must be convenient to use and from the perspective of HPC systems, it must be
scalable and perform well with low overhead. In this section we investigate both
aspects.

6.1 Performance

In our test environment, Elasticsearch processes about 750,000 metrics per sec-
ond, while the aggregated transfer rate stays below 10 MiB/s. Since our current
plug-in implementation uses 16 metrics, this is sufficient to capture I/O statistics
from about 46000 processes, simultaneously. The limiting factor is the CPU uti-
lization induced by Elasticsearch, but this bottleneck can be relaxed by scaling
up/out Elasticsearch.

6.2 Overhead

The Figures 4 and 5 show relative overhead of monitoring (APPIO, IOFS,
BOTH). To enhance comparability, it also contains benchmark results of test
runs without monitoring (NMON). In these figures we can observe a negligible
overhead for file I/O. For mmap I/O there is also a negligible overhead, but only
for read operations. For write operations, the overhead is around 8% for file I/O
and 3% for mmap I/O. In our case this was mostly the case. The outliers in
Figure 4a can be explained by a large number of function calls. For the outliers
in Figure 5b we have no explanation at the moment.

6.3 User experience

We paid particular attention to user experience, because we are convinced, that
software which is difficult to use or that doesn’t work properly finds little or
no acceptance by users. Although, the most parts of the framework meet our
expectations, after a closer look we found some limitations. The points below
refer to Grafana 4.2.0.

10/13

1
 K

iB

1
0
0
 K

iB

1
2
8
 K

iB

1
0
0
0
 K

iB

1
0
2
4
 K

iB

1
6
3
8
4
 K

iB

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

1.00

1.04

1.08

1.12

Scenario

R
e
la

ti
ve

 w
ri

te
 p

e
rf

o
rm

a
n
c
e

(a) IOR
Outliers for 1 KiB

Case Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1.125 1.133 1.139 1.137 1.142 1.147
2 3.506 3.537 3.580 3.590 3.652 3.662
3 4.738 4.888 5.120 5.078 5.257 5.384

1
 K

iB

1
0
0
 K

iB

1
2
8
 K

iB

1
0
0
0
 K

iB

1
0
2
4
 K

iB

1
6
3
8
4
 K

iB

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

1.000

1.025

1.050

Scenario

R
e
la

ti
ve

 w
ri

te
 p

e
rf

o
rm

a
n
c
e

(b) IOZone

Fig. 4: Write overhead. (NMON: no monitoring; APPIO: file I/O; IOFS: mmap
I/O; BOTH: file and mmap I/O)

Firstly, the update of information inside the drop-down lists is not sophis-
ticated. Grafana provides two options: update on dashboard load and update on
time range change. Under some conditions the drop-down list are not updated
when new values are available in the database. Depending on the configuration,
there are two workarounds to get the jobid appear. It can be done by leaving
and entering the dashboard or by changing the time range. Both options are
non-intuitive for users. In general, if entries doesn’t appear in the drop-down
lists, they can be entered manually, but it is also inconvenient, especially when
several template values must be updated. A solution could be a third option
(which is not implemented), that updates the information in the drop-down list
automatically on each mouse-click.

Secondly, the zoom function doesn’t provide an auto range function which
shows all data for current template values or allows jumping to the beginning of
the data.

Thirdly, neither Grafana nor Elasticsearch provide possibilities to compute
new metrics from existing ones. This could be a problem for advanced users who
need derived metrics. At the moment, derived metrics must be computed by
SIOX and sent to Grafana, which means additional network overhead and more
storage space consumption.

11/13

1
 K

iB

1
0
0
 K

iB

1
2
8
 K

iB

1
0
0
0
 K

iB

1
0
2
4
 K

iB

1
6
3
8
4
 K

iB

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

0.98

0.99

1.00

1.01

1.02

Scenario

R
e
la

ti
ve

 r
e
a
d
 p

e
rf

o
rm

a
n
c
e

(a) IOR

1
 K

iB

1
0
0
 K

iB

1
2
8
 K

iB

1
0
0
0
 K

iB

1
0
2
4
 K

iB

1
6
3
8
4
 K

iB

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

N
M

O
N

A
P

P
IO

IO
F

S
B

O
T

H

0.98

0.99

1.00

1.01

1.02

Scenario

R
e
la

ti
ve

 r
e
a
d
 p

e
rf

o
rm

a
n
c
e

(b) IOZone
Outliers for 1000 KiB

Case Min. 1st Qu. Median Mean 3rd Qu. Max.
2 1.224 1.241 1.261 1.257 1.271 1.288
3 1.250 1.257 1.260 1.265 1.267 1.300

Outliers for 1024 KiB
Case Min. 1st Qu. Median Mean 3rd Qu. Max.
2 1.260 1.282 1.288 1.293 1.308 1.342
3 1.270 1.275 1.288 1.287 1.298 1.304

Fig. 5: Read overhead. (NMON: no monitoring; APPIO: file I/O; IOFS: mmap
I/O; BOTH: file and mmap I/O)

7 Summary

The paper proposes an on-line monitoring framework for HPC systems, which
can help to detect and to describe the I/O behavior of parallel applications. It
is built on top of open source software: the instrumentation framework “SIOX”,
database “Elasticsearch”, visualization tool Grafana and a FUSE-based file sys-
tem “IOFS”.

SIOX is able to intercept the I/O requests from applications, and mount
point, when used with IOFS. The latter method can be used as a novel approach
for indirect interception of mmap I/O.

The performance of Elasticsearch on an office computer is sufficient to gather
750000 metrics per second. Since Elasticsearch is a distributed database this
value can be easily increased. The preliminary experiments on an office computer
showed that the overhead for file I/O is negligible in most cases. For mmap I/O
the overhead is around 8% for file I/O and 3% for mmap I/O. We intend to run
extended experiments on Mistral [4] as soon as the FUSE module is available,
paying particular attention to the outliers.

12/13

References

1. Darshan hpc i/o characterization tool. http://www.mcs.anl.gov/research/
projects/darshan/, 2015.

2. Score-p. http://www.vi-hps.org/projects/score-p/, 2015.
3. Vampir. http://www.paratools.com/Vampir, 2015.
4. Mistral. https://www.dkrz.de/Nutzerportal-en/doku/mistral, 2016.
5. Beautiful metric & analytic dashboards. http://grafana.org/, 2017.
6. Philip Carns. Darshan. In High Performance Parallel I/O, Computational Science

Series, pages 309–315. Chapman & Hall/CRC, 2015.
7. Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide. O’Reilly

Media, Inc., 1st edition, 2015.
8. Brijender Kahanwal. File system design approaches. CoRR, abs/1403.5976, 2014.
9. Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,

Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and Fe-
lix Wolf. Score-P: A Joint Performance Measurement Run-Time Infrastructure for
Periscope,Scalasca, TAU, and Vampir, pages 79–91. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

10. Julian Kunkel, Michaela Zimmer, Nathanael Hübbe, Alvaro Aguilera, Holger Mick-
ler, Xuan Wang, Andriy Chut, Thomas Bönisch, Jakob Lüttgau, Roman Michel,
and Johann Weging. The siox architecture – coupling automatic monitoring and
optimization of parallel i/o. 2014.

11. Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing mpi-io
portably and with high performance. In Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems, IOPADS ’99, pages 23–32, New York,
NY, USA, 1999. ACM.

13/13

